CFAES Give Today
Agronomic Crops Network

Ohio State University Extension

CFAES

Crop Response to Phosphorus Fertilizer in Ohio

Young Corn Plants

Phosphorus (P) is an essential plant nutrient and P fertilizers are added to supplement the soil's available P. There are economic and environmental benefits to making informed decisions about P fertilizer use. The under-application of P fertilizer can result in reduced yields, while over-application adds to input costs, with economic losses resulting from both scenarios. From an environmental perspective, excessive P going into streams and lakes can result in toxic algal blooms.

A few frequent questions about P fertilizer use are: Does P fertilizer always result in a positive yield response? How much yield increase is expected with applied P? What is the likelihood of yield penalty if P fertilizer is not applied?

A recently published factsheet, 'Soil Phosphorus and Crop Response to Phosphorus Fertilizer in Ohio' (https://ohioline.osu.edu/factsheet/anr-0146), provides a general overview of soil P and highlights the findings of Culman et al. (2023) to answer these practical questions (Rakkar and LaBarge, 2024). The study summarized 457 replicated field P trials conducted over the last 45 years across 40 counties in Ohio. The robust dataset evaluated corn, soybean, and wheat response to added P fertilizer in trials conducted on farms and at research stations.

Below are some key takeaways:

Does P fertilizer always result in a positive yield response?

No. Out of the 457 field P trials, a significant increase in crop yield was observed in 107 trials with P application. The crop response to added P also varied among crop types. Corn responded to P application in 29.9% of trials, soybean in 14.2%, and wheat in 36.8% (Fig. 1).

Fig. 1. Relation of relative yield and soil Mehlich-3 P for corn, soybean, and wheat across 457 field trials

 

 

 

 

 

 

 

How much yield increase is expected with applied P?

It depends on the Mehlich-3 soil test P level. The Mehlich-3 soil P measures the readily available soil P for crop uptake. Culman et al. (2023) classified Mehlich-3 soil P levels into five categories: <10, 10–20, 20–30, 30–40, and >40 ppm to evaluate the yield increase for each soil P category.

The crop yields were presented as Relative Yield, which refers to the yield with no P application divided by the maximum yield obtained across all P treatments. In other words, 100% relative yield means no yield increment with added P. The lower the relative yield, the higher the yield increment.

Generally, as the soil test P levels decreased, the yield increment increased with P input (Table 1). When the soil test P was less than 10 ppm, the median relative yield was 87%. As the soil test P level increased above the critical level of 20 ppm, the median relative yield ranged from 97% to 99%, signifying minimal yield increment with added P.

Table 1. Summary of crop response to P fertilizer by soil P classification. (adapted from Culman et al., 2023)

 

Mehlich-3 soil P classification (ppm)

Number of trials

Fertilizer responsive trials (%)

Median Relative Yield (%)

>40

71

14

99

30-40

53

13

98

20-30

121

12

97

10-20

164

34

93

<10

30

67

87

 

What is the likelihood of yield penalty if P fertilizer is not applied?

We can also determine the likelihood of yield penalty based on Mehlich-3 soil P with the information in Table 1. When the soil P level was less than 10 ppm, 67% of trials showed increased crop yields with applied P. When the P levels were above the critical level of 20 ppm, only 12-14% of trials showed increased crop yields. In other words, the likelihood of yield penalty with no P application decreases as soil P levels go above 20 ppm. If the soil test P level is less than 20 ppm, there is an increased risk of yield penalty with no P application.

 

For more soil fertility resources, information, and tools, use the link go.osu.edu/fertilityresources.

Reference:

Culman, S., Fulford, A., LaBarge, G., Watters, H., Lindsey, L. E., Dorrance, A., & Deiss, L. (2023). Probability of crop response to phosphorus and potassium fertilizer: Lessons from 45 years of Ohio trials. Soil Science Society of America Journal, 87, 1207-1220. https://doi.org/10.1002/saj2.20564

Rakkar, M. & LaBarge, G. 2024. Soil Phosphorus and Crop Response to Phosphorus Fertilizer in Ohio. Ohioline. (https://ohioline.osu.edu/factsheet/anr-0146)

Crop Observation and Recommendation Network

C.O.R.N. Newsletter is a summary of crop observations, related information, and appropriate recommendations for Ohio crop producers and industry. C.O.R.N. Newsletter is produced by the Ohio State University Extension Agronomy Team, state specialists at The Ohio State University and the Ohio Agricultural Research and Development Center (OARDC). C.O.R.N. Newsletter questions are directed to Extension and OARDC state specialists and associates at Ohio State.