Swine Nursery Manure as a Top-Dress Nitrogen Source on Wheat

Glen Arnold, Ohio State University Extension Educator, Putnam County
Jon Rausch, Program Director, Animal Manure Management
Albert Maag, Putnam County Soil and Water Conservation District

Objective:
To compare wheat yield response to nitrogen applied at top-dress as swine nursery manure and UREA.

Background

Crop Year: 2008
Cooperator: Jim Leopold
County: Putnam
Nearest Town: Glandorf
Drainage: Tile-40 ft spacing
Soil type: Fulton silty clay loam
Tillage: Conservation tillage
Previous Crop: Soybeans
Variety: Freedom

Soil test: pH 6.5, P 74 ppm, K 202 ppm, OM 3.13%
Planting Date: September 28, 2007
Row Width: 7.5 in.
Herbicides: n/a
Insecticide: n/a
Harvest Date: July 15, 2008
PSNT test: n/a

Methods

A randomized block design with two treatments and four replications was used. Manure plots were 26 feet wide and UREA plots were 40 feet wide. All plots were 575 feet long. The center 15 feet of each replication was harvested. Liquid swine manure from a nursery building was applied via incorporation using a 3,000 gallon tanker equipped with a modified Pecan toolbar 13 feet in width. UREA was applied using a standard fertilizer buggy.

The UREA nitrogen application rate was 90 pounds of nitrogen per acre. The liquid swine manure application rate was 4,500 gallons per acre. Manure sample results indicated 22 pounds of available nitrogen per 1,000 gallons of swine finishing manure. Swine manure treatments received 99 pounds of nitrogen, 23 lb/ac P₂O₅ and 47 lb/ac K₂O.

Swine Nursery Manure Analysis

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>lbs. per 1,000 Gallons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen (available the 1st year)</td>
<td>22.05</td>
</tr>
<tr>
<td>Phosphorus as P2O5</td>
<td>5.19</td>
</tr>
<tr>
<td>Potassium as K2O</td>
<td>10.34</td>
</tr>
</tbody>
</table>
Weather conditions during the time of manure application were sunny and 72 degrees. Because of the wet spring, the wheat was approximately eight inches tall (Feekes growth stage 5) at the time the treatments were applied on April 17th. Substantial amounts of wheat were flattened, especially by the manure tanker. The plot received above average rainfall for the 2008 growing season. Field conditions were firm during application.

<table>
<thead>
<tr>
<th>Treatment Summary</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment 1 (T1)</td>
<td>UREA 90 units of nitrogen per acre</td>
</tr>
<tr>
<td>Treatment 3 (T2)</td>
<td>4,200 gal/ac incorporated swine finishing manure</td>
</tr>
</tbody>
</table>

Results and Discussion

Yield Summary

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Yield (bu/ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average of four UREA reps (T1)</td>
<td>86.8 a</td>
</tr>
<tr>
<td>Average of four incorporated manure reps (T2)</td>
<td>89.6 a</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>NS</td>
</tr>
</tbody>
</table>

The results of this plot indicate no statistical difference for yield between the UREA treatments and the incorporated manure treatments. Swine nursery manure appears to be a satisfactory source of top-dress nitrogen for wheat.

UREA cost was $0.75 per pound so the UREA treatments had $75.00 dollars per acre of purchased fertilizer plus the cost of application. The manure was available from the farmer’s swine nursery building at no cost. Application costs for the manure would vary depending on the farm’s equipment and labor costs.

Acknowledgments:

The authors would like to thank Jim Leopold for his help with this research plot. Thanks to the Ohio Pork Producers Association and Ag Credit for their financial support of this research.

For more information, contact:
Glen Arnold
OSU Extension, Putnam County
124 Putnam Parkway
Ottawa, OH 45875
419-523-6294
arnold.2@osu.edu