Comparison of Swine Manure and UAN as Nitrogen Sources at Side-dress for Corn Yield

Glen Arnold, Ohio State University Extension Educator, Putnam County

Objectives
To compare corn yield response to nitrogen applied at side-dress as incorporated swine finishing manure and incorporated UAN 28%.

Background
Crop Year: 2012
Cooperator: Jerry Klopfenstein
County/Town: Paulding, Paulding
Soil Type: Paulding Clay
Drainage: Tile, systematic
Previous Crop: Soybeans
Corn Hybrid: Pioneer 33W84
Tillage: No-till
Soil Test pH 6.2, P 31 ppm, K 132 ppm
OM 2.4%
Planting Date: April 20, 2012
Row Width: 30 inch
Herbicide: Stalwart 1.7 qts/acre
Harvest Date: October 5, 2012

Methods
A randomized block design with three treatments and four replications was used. Plots were 12 rows (30 feet) wide and 1,150 feet long. Liquid swine manure from a finishing building was applied via incorporation using a 5,250 gallon Balzer tanker equipped with a Peecon toolbar. The Peecon opens the soil with a narrow couler to a depth of five inches and does not cover the manure furrow.

The swine manure and 28% UAN were applied on the same day while the corn was in the two leaf stage. Field conditions were dry at the time of application.

The 28% UAN application rate was 150 units of nitrogen per acre. All swine manure replications received 5,000 gallons per acre. Manure samples indicated 41.4 pounds of available nitrogen per 1,000 gallons. Available nitrogen is the ammonia portion of the nitrogen in the swine manure and approximately one-half of the organic portion. Swine manure treatments received 207 pounds of nitrogen, 50 lb./ac P₂O₅ and 204 lb./ac K₂O.

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>lbs. per 1,000 Gallons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen (available the 1st year)</td>
<td>41.4</td>
</tr>
<tr>
<td>Phosphorus as P₂O₅</td>
<td>9.9</td>
</tr>
<tr>
<td>Potassium as K₂O</td>
<td>40.8</td>
</tr>
</tbody>
</table>

Weather conditions during the time of manure application were sunny with an ambient air temperature of 75 degrees. The plot received well below average rainfall for the growing season.
Table 2. Treatment Summary

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment 1 (T1)</td>
<td>50 gal/ac UAN 28%, 150#/a nitrogen</td>
</tr>
<tr>
<td>Treatment 2 (T2)</td>
<td>5,000 gal/ac incorporated liquid swine manure, 207#/a nitrogen</td>
</tr>
</tbody>
</table>

Results and Discussion

Table 3. Yield Summary

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Yield (bu/ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28% UAN (T1)</td>
<td>110.7<sup>a</sup></td>
</tr>
<tr>
<td>Incorporated manure (T2)</td>
<td>118.8<sup>b</sup></td>
</tr>
</tbody>
</table>

LSD (0.05)

The results of this plot indicated a statistically significant difference between the treatments (LSD (0.05) = 3.37, C.V=1.30). The difference is likely due to the added moisture from the manure application as the plot was in extreme drought throughout the growing season.

The 28% UAN cost $0.62 per pound or $93 per acre plus the cost of application. The manure was available from the farmer’s swine finisher building at no cost. The manure application cost, using the Minnesota Manure Distribution Cost Analyzer spreadsheet was calculated at $20 per 1,000 gallons or $.02 per gallon. The cost of applying 5,000 gallons per acre as sidedress nitrogen was $100 per acre.

Acknowledgement

The author would like to thank Jeff Duling for the use of manure application equipment. The author would also like to thank Jerry and Abram Klopfenstein for the field, manure application assistance, and harvesting assistance. The author would also like to thank the Ohio Pork Producers and Ag Credit for their financial support of this research.

For more information, contact:
Glen Arnold
Field Specialist, Manure Nutrient Management Systems
Ohio State University Extension, Hancock County
7868 CR 140, Suite B
Findlay, Ohio 45840
419-422-3851
Arnold.2@osu.edu