Comparison of Swine Manure and 28% UAN as Nitrogen Sources at Side-dress for Corn Yield

Glen Arnold, Ohio State University Extension Field Specialist
Steve Prochaska, Ohio State University Extension Field Specialist

Objectives

To compare corn yield response to nitrogen applied at side-dress as incorporated swine finishing manure and incorporated 28% UAN.

Background

Crop Year: 2012
Cooperator: Jason Kalb
County/Town: Seneca, Attica
Soil Type: Tiro silt loam
Drainage: Tile, systematic
Previous Crop: Soybeans
Corn Hybrid: DK 570
Tillage: Fall Chisel and soil finisher
Soil Test pH 6.3, P 54 ppm, K 160 ppm
OM 2.4%
Planting Date: April 18, 2012
Row Width: 30 inch
Herbicide: Keystone 2.4 qts/acre
Harvest Date: October 19, 2012

Methods

A randomized block design with two treatments and four replications was used. Plots were 12 rows (30 feet) wide and 1,150 feet long. Liquid swine manure from a finishing building was incorporated as a sidedress to corn using a 5,000 gallon Kuhn tanker equipped with a Yetter toolbar with closing wheels. Manure was incorporated to a depth of approximately 6 inches and soil opening covered with dirt.

The swine manure and 28% UAN were applied on the same day while the corn was in the three leaf stage. Field conditions were firm at the time of application.

Stand counts takes at the V3 stage indicated highly variable stands of 22,400 plants per acre across both treatments. Starter fertilizer was applied at planting at 80 pounds of 29-46-0-11 per acre.

The 28%UAN rate was 160 units of nitrogen per acre. All swine manure replications received 4,400 gallons per acre. Manure samples indicated 34.9 pounds of available nitrogen per 1,000 gallons. Available nitrogen is the ammonia portion of the nitrogen in the swine manure and approximately one-half of the organic portion. Swine manure treatments received 168 pounds of nitrogen, 54 lb./ac P₂O₅ and 134 lb./ac K₂O.

Table 1. Swine Finishing Manure Analysis (average of two samples)

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>lbs. per 1,000 Gallons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen (available the 1st year)</td>
<td>34.9</td>
</tr>
<tr>
<td>Phosphorus as P₂O₅</td>
<td>11.3</td>
</tr>
<tr>
<td>Potassium as K₂O</td>
<td>27.9</td>
</tr>
</tbody>
</table>
Weather conditions during the time of manure application were sunny with an ambient air temperature of 75 degrees. The plot received approximately nine inches of rain during the growing season with most of this occurring very late in the growing season.

Table 2. Treatment Summary

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment 1 (T1)</td>
<td>150 pounds per acre of nitrogen as 28% UAN</td>
</tr>
<tr>
<td>Treatment 2 (T2)</td>
<td>4,400 gal/ac incorporated liquid swine finishing manure, 168 #/a N</td>
</tr>
</tbody>
</table>

Results and Discussion

Table 3. Yield Summary

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Yield (bu/ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28% UAN (T1)</td>
<td>129.6<sup>a</sup></td>
</tr>
<tr>
<td>Incorporated manure (T2)</td>
<td>139.0<sup>b</sup></td>
</tr>
</tbody>
</table>

LSD (0.05)

The results of this plot indicated yield differences between the treatments were statistically significant (LSD (0.05) = 5.52, C.V=1.76). The manure treatments were a darker green during the growing season. More rainfall earlier in the growing season might have helped the 28% UAN reps obtain higher yields.

The 28% UAN cost $0.62 per pound or $93 per acre plus the cost of application. The manure was available from the farmer’s swine finisher building. The manure application cost, using the Minnesota Manure Distribution Cost Analyzer spreadsheet, was calculated at $20 per 1,000 gallons or $.02 per gallon. The cost of applying 4,400 gallons per acre as sidedress nitrogen was $88 per acre.

Acknowledgement

The authors would like to thank Jason Kalb for the use of his manure application equipment and his corn field.

For more information, contact:
Glen Arnold
Field Specialist, Manure Nutrient Management Systems
Ohio State University Extension, Hancock County
7868 CR 140, Suite B
Findlay, Ohio 45840
419-422-3851
Arnold.2@osu.edu