Effects of Phosphorus, Potassium or the Combination on Soybean Yield and Profit

Eric Richer, Ohio State University Extension Educator, Fulton County

Objective

To determine the effects of applications of phosphorus, potassium or the combination on soybean yield.

Background

Crop Year: 2014 Tillage: No-till

Location: Metamora, OH Soil Test: pH 6.5, P 10 ppm*, K 116 ppm

County: Fulton Planting Date: May 8, 2014
Soil Type: Hoytville Seeding Rate: 165,000 seeds/ac
Drainage: Systematic Harvest Date: October 30, 2014

Previous Crop: Corn *Reported as Bray P1

Methods

This research trial included four treatments replicated four times in a randomized complete block design. Plots were approximately 1,200 feet long by 50 feet wide. Soybean variety was Asgrow 3034. Fertilizer treatments were broadcast in spring prior to planting with a 50 foot spreader using RTK autosteer technology. Soybeans were then planted with the same seeding rate and pesticide treatments across all treatments. Plot centers were harvested with a 35 foot header on a JD 9660 combine. Yield and moisture data was collected with a calibrated yield monitor and adjusted to 13% moisture content. Weather data was obtained from weather.com.

Treatments: 1. No fertilizer

2. 75 lbs/ac Mono-Ammonium Phosphate (MAP) 11-52-0

3. 150 lbs/ac Potash 0-0-60

4. 75 lbs/ac MAP and 150 lbs/ac Potash

Results

Table 1. Soybean Yield (bu/ac) Response to Phosphorus and Potassium

1 Ottassium					
<u>Treatment</u>	Moisture	Dry Yield	Gross Revenue	Fertilizer Cost	Net Return
		(per acre)	(per acre)	(per acre)	(per acre)
 No fertilizer 	12.7%	59.5 b	\$595	\$0	\$595
2. 75 lbs/ac MAP	12.6%	62.0 a	\$620	\$30.30	\$590
3. 150 lbs/ac Potash	12.8%	59.4 b	\$595	\$40.65	\$554
4. 75 lbs/ac MAP &	12.8%	59.0 b	\$590	\$62.40	\$528
150 lbs/ac Potash					

LSD 2.55 (p<.05), CV 2.66 – Yes significant difference between treatments

OHIO STATE UNIVERSITY EXTENSION

Economics: Gross income = yield x \$10.00/bu; MAP costs = \$0.32/lb (source: OFR collaborator) Potash costs = \$0.23/lb (source: OFR collaborator)

Combined fertilizer = \$0.25/lb (source: OFR collaborator)

Application cost = \$6.15/ac (source: 2014 OSUE Custom Farm Rental Rates)

Discussion:

The only treatment that showed a statistically significant difference in yield was Treatment 2 (75 lbs/ac of MAP), showing at least a +2.5 bushel per acre advantage over all other treatments. However, Treatment 4 also contained 75 lbs/ac of MAP but did not have a similar yield increase. Further data in the form of multi-year replications will add to the validity of these results.

Acknowledgement

The author expresses appreciation to on-farm collaborator Keith Truckor for the planting and harvesting of this plot. Thanks to Crop Production Services (Morenci) for applying the fertilizer treatments. Thanks to student worker Emily Herring for assistance with data collection. This projected was supported by the Ohio Soybean Council Research and Education Fund.

For more information, contact: Eric Richer OSU Extension –Fulton County 8770 State Route 108 Wauseon, Ohio 43567 Richer.5@osu.edu

