The Effect of Relative Maturity on Soybeans Grown in a Modified Relay Intercropping System

Steve Prochaska, Ohio State University Extension Field Specialist, Agronomic Systems
Jason Hartschuh, OSU Extension Crawford County, Agricultural and Natural Resources Educator

Objective
To evaluate yield response of Modified Relay Intercrop (MRI) soybeans over 3 relative maturity soybean varieties.

Background

Crop Year: 2014
Location: OARDC South Charleston
County/Town: Clark
Soil Type: Kokomo/Stawn-Crosby
Drainage: Systematic
Previous Crop: Soybeans
Tillage: No – tillage
Soil Test: pH 6.5, P (M3) 48 ppm, K 152 ppm
SCN # in area of plots: 60 eggs per 100cc
Row width: 15 inches
Fertilizer: (wheat & beans) 90-0-0
Wheat planting date: 10-1-13
Wheat Variety: Pioneer 25R39
Wheat Seeding Rate: 1 million sds/acre
MRI Soybean Planting Date: May 28, 2013
Soybean Varieties: See below
MRI Seeding Rate: 225,000 seeds/acre
Wheat harvest date: July 10, 2014
Date of MRI Soybean harvest: Oct. 28
Rainfall: 8.9 inches (from 6/1-9/1)

Methods
Pioneer 29R37 soft red winter wheat was planted Oct. 1, 2013 in 15 inch rows at a rate of 1.0 million seeds per acre. Soybeans were interseeded into standing wheat with 15 inch row spacing on May 28 with a Great Plains units custom interseeder mounted on a 3 point hitch. Wheat was harvested on July10, 2014 with a Kincaid small plot combine with a 2 meter header.

This study used a completely randomized design with three treatments replicated four times to compare yield across relative maturity. A small plot combine was used to harvest soybean plots on Oct.28. Plot size averaged 80 inches by 40 feet.

 Treatment Relative maturity
 1) NK S39-U2 3.9
 2) NK S34-U2 3.4
 3) NK S29-V2 2.9

agcrops.osu.edu

THE OHIO STATE UNIVERSITY
COLLEGE OF FOOD, AGRICULTURAL,
AND ENVIRONMENTAL SCIENCES

CFAES provides research and related educational programs to clientele on a nondiscriminatory basis. For more information: go.osu.edu/cfaesdiversity.
Results

Table 1. Moisture and Yield of Soybeans (Adjusted to 13.5% moisture)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Ave. Moisture</th>
<th>Ave. Yield (bu/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NK S39-U2</td>
<td>14.4</td>
<td>45.0</td>
</tr>
<tr>
<td>NK S34-U2</td>
<td>15.0</td>
<td>49.3</td>
</tr>
<tr>
<td>NK S29-V2</td>
<td>14.4</td>
<td>46.7</td>
</tr>
</tbody>
</table>

F=.47, Not Significant; P>F=.64, CV = 11.7, LSD= 11

Summary

There was a not a significant difference in yield among different maturity soybeans interseeded into wheat for this study conducted at OARDC South Charleston located in central Ohio.

Acknowledgement

The authors express appreciation to Joe Davlin and Tyler Mumford for their cooperation and aid in the planting and harvesting of this trial.

For more information, contact:
Name: Steve Prochaska
Address: 222 W. Center St.
Marion, Ohio 43302
prochaska.1@osu.edu

For more information, contact:
Name: Jason Hartschuh
Address: 112 East Mansfield Street
Suite 303
Bucyrus, Ohio 44820
hartschuh.11@osu.edu