Comparison of Swine Manure and UAN as Nitrogen Sources at Side-dress for Corn Yield

Glen Arnold, Field Specialist, Ohio State University Extension

Objective
To compare corn yield response to nitrogen applied at side-dress as incorporated swine finishing manure and incorporated UAN 28%.

Background
Crop Year: 2013
Cooperator: Jeff Duling
County: Hancock
Nearest Town: McComb
Drainage: Tile-40 feet spacing
Soil type: Hoytville Clay
Tillage: No-till
Previous Crop: Soybeans
Variety: Pioneer 33W84
Soil Test pH 6.4
P 41 ppm (82 lb/ac)
K 150 ppm (350 lb/ac)
Organic Mater 2.2%
Planting Date: April 29, 2013
Row Width: 30 inch
Herbicide: FulTime NXT 3 qt/ac
Insecticide: N/A
Harvest Date: October 21, 2013

Methods
A randomized block design with two treatments and four replications was used. Plots were 16 rows (40 feet) wide and 1,150 feet long. Liquid swine manure from a finishing building was applied via incorporation using a 5,250 gallon Balzer tanker equipped with a Dietrich toolbar. The Dietrich toolbar incorporated the swine manure at a depth of five inches using shanks with five inch sweeps.

The swine manure and 28% UAN were applied on the same day while the corn was in the V2 stage. Field conditions were firm at the time of application.

The 28% UAN application rate was 175 units of nitrogen per acre. All swine manure replications received 6,000 gallons per acre. Manure samples indicated 28.4 pounds of available nitrogen per 1,000 gallons. Swine manure treatments received 170 pounds of nitrogen, 61 lb/ac P₂O₅ and 120 lb/ac K₂O per acre.

Swine Finishing Manure Analysis

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>lbs. per 1,000 Gallons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen (available the 1st year)</td>
<td>28.4</td>
</tr>
<tr>
<td>Phosphorus as P₂O₅</td>
<td>10.1</td>
</tr>
<tr>
<td>Potassium as K₂O</td>
<td>20.0</td>
</tr>
</tbody>
</table>

Weather conditions during the time of manure application were sunny with an ambient air temperature of 75 degrees. The plot received well below average rainfall for the growing season.
Table 1 Treatment Summary

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment 1 (T1)</td>
<td>50 gal/ac UAN 28%, 150#/ac of N</td>
</tr>
<tr>
<td>Treatment 2 (T2)</td>
<td>6,000 gal/ac incorporated liquid swine manure,</td>
</tr>
<tr>
<td></td>
<td>170#/ac of N</td>
</tr>
</tbody>
</table>

Results and Discussion

Table 2 Yield Summary

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Yield (bu/ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28% UAN (T1)</td>
<td>190.0</td>
</tr>
<tr>
<td>Incorporated manure (T2)</td>
<td>194.1</td>
</tr>
</tbody>
</table>

LSD (0.05)

The results of this plot indicated no statistically significant difference between the treatments (LSD (0.05) = 7.87, C.V=1.82).

The 28% UAN cost $0.62 per pound or $93 per acre plus the cost of application. The manure was available from the farmer’s swine finisher building at no cost. The manure application cost, using the Minnesota Manure Distribution Cost Analyzer spreadsheet was calculated at $20 per 1,000 gallons or $.02 per gallon. The cost of applying 6,000 gallons per acre as side-dress nitrogen was $120 per acre.

Acknowledgement

The authors would like to thank Jeff Duling for the use of manure application equipment and his corn field.

For more information, contact:
Glen Arnold
Field Specialist, Manure Nutrient Management Systems
Ohio State University Extension, Hancock County
7868 County Road 140, Suite B
Findlay, Ohio 45840
arnold.2@osu.edu