Drainage and Tillage Effect on Corn Production

Alan Sundermeier, Agriculture & Natural Resources Extension Educator
Randall Reeder, Extension Specialist, Conservation Tillage

Objective

To evaluate the effect of soil drainage and tillage on corn production.

Background

Cooperator: O.A.R.D.C. NW Branch
County: Wood
Nearest Town: Hoytville
Drainage: see below
Soil type: Hoytville, clay
Tillage: see below
Previous Crop: soybean
Variety: Becks 5354HXR
Soil test:
Fertilizer: 200 # 10-26-26, sidedress 28% N @ 33 Gal/ac
Planting Date: 6-4-11
Planting Rate: 30,000
Row Width: 30 in
Herbicides: Cinch, Prequel, Honcho, 2,4-D, Roundup Weathermax
Harvest Date: 12-12-11

Methods

The entries were replicated eight times in a randomized complete block design. Plot size- 10 feet x 60 feet each entry. Harvest data collected from center rows. The same crop was planted on all treatments on the same day, using the same variety, fertility, and herbicide.

Drained plots have subsurface tile drainage spaced 20 feet apart compared to undrained plots which do not have subsurface drainage. Both sets of drainage plots contain four identical tillage treatments.

1. Continuous no-till
2. Fall Strip Tillage – a 6 in deep mole knife with mounding coulters
3. Fall Zone Tillage – a 12 to 18 inch deep straight shank subsoiler, no further tillage
4. Fall chisel plow – followed by fall roterra finish tillage

Rainfall at this location:

<table>
<thead>
<tr>
<th>Year</th>
<th>Amount</th>
<th>Long Term Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>1.40 in</td>
<td>3.6 in</td>
</tr>
<tr>
<td>July</td>
<td>4.29 in</td>
<td>3.8 in</td>
</tr>
<tr>
<td>August</td>
<td>3.74 in</td>
<td>3.0 in</td>
</tr>
<tr>
<td>Total</td>
<td>9.43 in</td>
<td>10.4 in</td>
</tr>
</tbody>
</table>
RESULTS

2011 Corn Yields bushels / acre

<table>
<thead>
<tr>
<th>Drainage</th>
<th>Tillage</th>
<th>Yield</th>
<th>Significance</th>
<th>LSD (.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drained</td>
<td>No-till</td>
<td>169.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undrained</td>
<td>No-Till</td>
<td>162.9</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Drained</td>
<td>Strip-till</td>
<td>167.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undrained</td>
<td>Strip-till</td>
<td>165.3</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Drained</td>
<td>Zone-till</td>
<td>166.0</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Undrained</td>
<td>Zone-till</td>
<td>161.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drained</td>
<td>Chisel Plow</td>
<td>141.1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Undrained</td>
<td>Chisel Plow</td>
<td>168.7</td>
<td>B</td>
<td>(13.4)</td>
</tr>
</tbody>
</table>

Summary

The chisel plow treatment was the only significant difference in yield due to drainage. All other treatments did not show any difference in yield due to drainage.

Because of an extremely wet May, corn was planted later than usual (June 4) and the soil moisture was essentially at field capacity below planting depth. Then rainfall during June was 2.2 inches below normal. A drier growing season tends to negate the usual yield advantage resulting from good subsurface drainage.

Acknowledgement

The author expresses appreciation to the staff at the Ohio Ag Research & Development Center, Northwest Agricultural Research Station for assistance with this research, Matt Davis manager.

For more information, contact:
Alan Sundermeier
Wood County
639 Dunbridge Road, Suite 1
Bowling Green, OH 43402
sundermeier.5@osu.edu