Evaluation of Glyphosate Tolerant Soybeans in a Modified Relay Intercrop System

Objective

Compare the yield of two selected glyphosate tolerant soybeans in a Modified Relay Intercrop (MRI) system.

Background (2004)

Test Site:	Brewer Farm	Soil test:	pH 5.6. P 15 ppm.	
County:	Crawford		K 113 ppm	
Soil type:	Blount silt loam	Fertilizer:	120-80-105 actual NPK applied	
Tillage:	no-tillage		per acre	
Previous crop:	Soybeans	Wheat Planting date: 10/3/03		
Wheat Variety:	Agri 962	Planting rate:	120 lb/A	
	-	Wheat Harvest date: 7/1/04		
		Soybean plantir	ng date 6/3/04	
		Soybean seedin	g rate 250,000 seeds/acre	
		Row width:	10 inch	
		Wheat Herbicid	le: 2,4-D 1 pt/A	
		Soybean Herbic	cide: .3 oz First Rate, 6 oz Select	
		Soybean harves	t date: 10/30/04	

Methods

A completely randomized design with three replications in large plots was used to evaluate glyphosate tolerant soybean varieties in a MRI system. Treatments were 10-inch row wheat interseeded with Renwick and Pioneer 93B36 soybeans. Wheat and soybeans were both planted with a 15 foot Great Plains Drill. Wheat and soybean harvest was completed with an Ag Leader Yield Monitor equipped 9500 John Deere combine that had been calibrated.

Results

Table 1.	Glyphosate	Tolerant	Sovbean	Varietv	Response to	Interseeding	(6/3/04)
I dole It	orgphosate	1 orer and	soj sean	, arreed	response to	meenseeung	(0,0,0,1)

Soybean Variety	Intercropped	F-test
	(bu/A)	
Renwick	48.5	
Pioneer 93B36	45.3	
Average	46.9	1.98 NS

Summary

There was no significant difference in yield between the soybean varieties. The average of the MRI glyphosate tolerant soybean plot at nearly 47 bushel per acre following 65 bushel wheat was the highest soybean yield achieved in Crawford county MRI system plot work to date. Ideal weather with adequate rainfall (14.3 inches from June 1 to September 15) was the primary reason for the excellent soybean yields. The average of intercropped soybeans over six years of plot work in Crawford county previous to 2004 was 30 bu/acre and this difference when compared to Crawford county average soybean yield over the same period of 45 bushel per acre is about 33 percent. The year to year difference between Crawford county average yields and MRI plot yields varied from 9 to 89 percent thus monoculture system soybeans would always be expected to yield more than MRI system soybeans.

MRI Research Results (All Plots in Crawford County.)					
6-Year Average Yields in MRI System					
Year	Soft Red Winter Wheat Yields*	Soybean Yields*			
1994	65 bu/acre	41 bu/acre			
1995	72 bu/acre	27 bu/acre			
1997	70 bu/acre	28 bu/acre			
1998	73 bu/acre	41 bu/acre			
1999	83 bu/acre	5 bu/acre			
2000	76 bu/acre	37 bu/acre			
Average	73 bu/acre	30 bu/acre			
* Yields represent Grand Mean for the year over all treatments. (Prochaska, 2001)					

Finally, looking at a simple gross income per acre comparison between a monoculture soybean enterprise and a MRI enterprise. Monoculture soybeans* at 64 bushel/acre would generate 397 dollars per acre** and MRI at 65 bushel/acre for wheat and 46.9 bushel/ acre for soybean would generate 502 dollars per acre**. There are added costs of production in an MRI system. However, long term average yields of soybeans and wheat indicate that MRI can be a profitable cropping system for north central Ohio farmers in years of adequate rainfall.

* 64 bushels per acre was mean yield of glyphosate tolerant soybean varieties in the 2004 Ohio Soybean Performance Test for the 2 northern Ohio locations.
** 6.20/bushel price used for soybeans and 3.25/bushel price used for wheat

For further information, contact:

Dr. Steve Prochaska Ohio Sate University Extension 117 E. Mansfield St. Bucyrus, Ohio 44820 prochaska.1@osu.edu